67 research outputs found

    Interplay Between Sub-Cellular Alterations of Calcium Release and T-Tubular Defects in Cardiac Diseases

    Get PDF
    Asynchronous Ca2+ release promotes non-homogeneous myofilament activation, leading to mechanical dysfunction, as well as initiation of propagated calcium waves and arrhythmias. Recent advances in microscopy techniques have allowed for optical recordings of local Ca2+ fluxes and action potentials from multiple sub-cellular domains within cardiac cells with unprecedented spatial and temporal resolution. Since then, sub-cellular local information of the spatio-temporal relationship between Ca2+ release and action potential propagation have been unlocked, providing novel mechanistic insights in cardiac excitation-contraction coupling (ECC). Here, we review the promising perspectives arouse from repeatedly probing Ca2+ release at the same sub-cellular location while simultaneously probing multiple locations at the same time within a single cardiac cell. We also compare the results obtained in three different rodent models of cardiac diseases, highlighting disease-specific mechanisms. Slower local Ca2+ release has been observed in regions with defective action potential conduction in diseased cardiac cells. Moreover, significant increment of Ca2+ variability (both in time and in space) has been found in diseased cardiac cells but does not directly correlate with local electrical defects nor with the degree of structural aberrations of the cellular membrane system, suggesting a role for other players of the ECC machinery. We finally explore exciting opportunities provided by the technology for studying different cardiomyocyte populations, as well as for dissecting the mechanisms responsible for subcellular spatio-temporal variability of Ca2+ release

    Altered Ca2+ and Na+ Homeostasis in Human Hypertrophic Cardiomyopathy: Implications for Arrhythmogenesis

    Get PDF
    Hypertrophic cardiomyopathy (HCM) is the most common mendelian heart disease, with a prevalence of 1/500. HCM is a primary cause of sudden death, due to an heightened risk of ventricular tachyarrhythmias that often occur in young asymptomatic patients. HCM can slowly progress toward heart failure, either with preserved or reduced ejection fraction, due to worsening of diastolic function. Accumulation of intra-myocardial fibrosis and replacement scars underlies heart failure progression and represents a substrate for sustained arrhythmias in end-stage patients. However, arrhythmias and mechanical abnormalities may occur in hearts with little or no fibrosis, prompting toward functional pathomechanisms. By studying viable cardiomyocytes and trabeculae isolated from inter-ventricular septum samples of non-failing HCM patients with symptomatic obstruction who underwent myectomy operations, we identified that specific abnormalities of intracellular Ca2+ handling are associated with increased cellular arrhytmogenesis and diastolic dysfunction. In HCM cardiomyocytes, diastolic Ca2+ concentration is increased both in the cytosol and in the sarcoplasmic reticulum and the rate of Ca2+ transient decay is slower, while the amplitude of Ca2+-release is preserved. Ca2+ overload is the consequence of an increased Ca2+ entry via L-type Ca2+-current [due to prolongation the action potential (AP) plateau], combined with a reduced rate of Ca2+-extrusion through the Na+/Ca2+ exchanger [due to increased cytosolic (Na+)] and a lower expression of SERCA. Increased late Na+ current (INaL) plays a major role, as it causes both AP prolongation and Na+ overload. Intracellular Ca2+ overload determines an higher frequency of Ca2+ waves leading to delayed-afterdepolarizations (DADs) and premature contractions, but is also linked with the increased diastolic tension and slower relaxation of HCM myocardium. Sustained increase of intracellular [Ca2+] goes hand-in-hand with the increased activation of Ca2+/calmodulin-dependent protein-kinase-II (CaMKII) and augmented phosphorylation of its targets, including Ca2+ handling proteins. In transgenic HCM mouse models, we found that Ca2+ overload, CaMKII and increased INaL drive myocardial remodeling since the earliest stages of disease and underlie the development of hypertrophy, diastolic dysfunction and the arrhythmogenic substrate. In conclusion, diastolic dysfunction and arrhythmogenesis in human HCM myocardium are driven by functional alterations at cellular and molecular level that may be targets of innovative therapies

    T-Tubular Electrical Defects Contribute to Blunted β-Adrenergic Response in Heart Failure.

    Get PDF
    Alterations of the β-adrenergic signalling, structural remodelling, and electrical failure of T-tubules are hallmarks of heart failure (HF). Here, we assess the effect of β-adrenoceptor activation on local Ca2+ release in electrically coupled and uncoupled T-tubules in ventricular myocytes from HF rats. We employ an ultrafast random access multi-photon (RAMP) microscope to simultaneously record action potentials and Ca2+ transients from multiple T-tubules in ventricular cardiomyocytes from a HF rat model of coronary ligation compared to sham-operated rats as a control. We confirmed that β-adrenergic stimulation increases the frequency of Ca2+ sparks, reduces Ca2+ transient variability, and hastens the decay of Ca2+ transients: all these effects are similarly exerted by β-adrenergic stimulation in control and HF cardiomyocytes. Conversely, β-adrenergic stimulation in HF cells accelerates a Ca2+ rise exclusively in the proximity of T-tubules that regularly conduct the action potential. The delayed Ca2+ rise found at T-tubules that fail to conduct the action potential is instead not affected by β-adrenergic signalling. Taken together, these findings indicate that HF cells globally respond to β-adrenergic stimulation, except at T-tubules that fail to conduct action potentials, where the blunted effect of the β-adrenergic signalling may be directly caused by the lack of electrical activity
    • …
    corecore